Annealing of Co-Cr dental alloy: effects on nanostructure and Rockwell hardness

نویسندگان

  • Simel Ayyıldız
  • Elif Hilal Soylu
  • Semra İde
  • Selim Kılıç
  • Cumhur Sipahi
  • Bulent Pişkin
  • Hasan Suat Gökçe
چکیده

PURPOSE The aim of the study was to evaluate the effect of annealing on the nanostructure and hardness of Co-Cr metal ceramic samples that were fabricated with a direct metal laser sintering (DMLS) technique. MATERIALS AND METHODS Five groups of Co-Cr dental alloy samples were manufactured in a rectangular form measuring 4 × 2 × 2 mm. Samples fabricated by a conventional casting technique (Group I) and prefabricated milling blanks (Group II) were examined as conventional technique groups. The DMLS samples were randomly divided into three groups as not annealed (Group III), annealed in argon atmosphere (Group IV), or annealed in oxygen atmosphere (Group V). The nanostructure was examined with the small-angle X-ray scattering method. The Rockwell hardness test was used to measure the hardness changes in each group, and the means and standard deviations were statistically analyzed by one-way ANOVA for comparison of continuous variables and Tukey's HSD test was used for post hoc analysis. P values of <.05 were accepted as statistically significant. RESULTS The general nanostructures of the samples were composed of small spherical entities stacked atop one another in dendritic form. All groups also displayed different hardness values depending on the manufacturing technique. The annealing procedure and environment directly affected both the nanostructure and hardness of the Co-Cr alloy. Group III exhibited a non-homogeneous structure and increased hardness (48.16 ± 3.02 HRC) because the annealing process was incomplete and the inner stress was not relieved. Annealing in argon atmosphere of Group IV not only relieved the inner stresses but also decreased the hardness (27.40 ± 3.98 HRC). The results of fitting function presented that Group IV was the most homogeneous product as the minimum bilayer thickness was measured (7.11 Å). CONCLUSION After the manufacturing with DMLS technique, annealing in argon atmosphere is an essential process for Co-Cr metal ceramic substructures. The dentists should be familiar with the materials that are used in clinic for prosthodontics treatments.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Comparison between the Effect of Cr and W Addition on Formation Kinetic of Nanostructure TiAl(γ) Alloy by Mechanical Alloying Route

In this research, mechanical alloying was used to produce Ti-50Al, Ti-45Al-5Cr and Ti-45Al-5W (at%) alloys. The effect of ternary addition (Cr and W) on microstructure and production efficiency of TiAl alloy were investigated. Alloying was performed in a planetary mill and the milling time varying from 5 to 70h. The structural evaluation in these powders was done by X-ray diffraction (XRD) tech...

متن کامل

Synthesis of Nanostructure Ti-45Al-5Cr Alloy by Mechanical Alloying and Study the Effect of Cr Addition on Microstructure of TiAl Alloy

In this work, mechanical alloying was employed to produce Ti-50Al and Ti-45Al-5Cr (at%) alloys. Alloying was performed in a planetary mill and the alloying time varying from 5 to 70h. Characterization of the powder mixture was performed by X-ray diffraction (XRD), SEM analyses and DTA test, during mechanical alloying and after annealing at 1100°c in vacuum oven. The results showed, after 50h of...

متن کامل

Hardening of an Al0.3CoCrFeNi high entropy alloy via high-pressure torsion and thermal annealing

High-pressure torsion (HPT) and thermal annealing were applied to a face-centered cubic as-cast Al0.3CoCrFeNi high entropy alloy. Processing by HPT produced a nanostructure with a higher incremental hardness than in most HPT single-phase materials and subsequent annealing at appropriate temperatures gave an ordered body-centered cubic secondary phase with an additional increase in hardness. The...

متن کامل

Optimization of micro hardness of nanostructure Cu-Cr-Zr alloys prepared by the mechanical alloying using artificial neural networks and genetic algorithm

Cu–Cr-Zr alloys had wide applications in engineering applications such as electrical and welding industrial especially for their high strength, high electrical as well as acceptable thermal conductivities and melting points. It was possible to prepare the nano-structure of these age hardenable alloys using mechanical alloying method as a cheap and mass production technique to prepare the non-eq...

متن کامل

Microstructure, Hardness Evolution, and Thermal Stability Mechanism of Mechanical Alloyed Cu-Nb Alloy during Heat Treatment

The microstructure, hardness evolution, and thermal stability of mechanically alloyed (MA-ed) nanocrystalline Cu–10 wt %Nb solid solution during heat treatment were examined using X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), high-resolution TEM (HRTEM) observations, and microhardness measurement. It is found that the pronounced precipitati...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2013